

Abstract—The BTeV experiment was a collider based high

energy physics (HEP) B-physics experiment proposed at
Fermilab. It included a large-scale, high speed trigger/data
acquisition (DAQ) system, reading data off the detector at 500
Gbytes/sec and writing to mass storage at 200 Mbytes/sec. The
online design was considered to be highly credible in terms of
technical feasibility, schedule and cost. This paper will give an
overview of the overall trigger/DAQ architecture, highlight
some of the challenges, and describe the BTeV approach to
solving some of the technical challenges.

At the time of termination in early 2005, the experiment had
just passed its baseline review. Although not fully
implemented, many of the architecture choices, design, and
prototype work for the online system (both trigger and DAQ)
were well on their way to completion. Other large, high-speed
online systems may have interest in the some of the design
choices and directions of BTeV, including (a) a commodity-
based tracking trigger running asynchronously at full rate, (b)
the hierarchical control and fault tolerance in a large real time
environment, (c) a partitioning model that supports offline
processing on the online farms during idle periods with plans
for dynamic load balancing, and (d) an independent parallel
highway architecture.

Index Terms—Data acquisition, large-scale systems, real
time systems, triggering.

I. INTRODUCTION
HE proposed BTeV detector [1] consisted of 6
separate subdetectors: pixel, silicon strips, straw tubes,

RICH, EMCAL and muon with the pixel detector
dominating the channel count (see Table 1).

Table 1. Channel Count

Subsystem Channels DCB Subsystems
Pixel 23M 10
Strips 118K 2
Straws 54K 6
RICH 144K 4
EMCAL 10K 2
Muon 37K 4

Manuscript received June 5, 2005. This work was supported in part

Operated by Universities Research Association Inc. under Contract No.
DE-AC02-76CH03000 with the United States Department of Energy.

M. Votava is with the Fermi National Accelerator Laboratory, Batavia,
IL 60510 USA (phone: 630-840-2625; fax: 630-840-; e-mail:
Votava@fnal.gov).

The overall detector was designed to run with a 396nsec

(2.5 MHz) beam collision (a.k.a crossing or event) rate. The
timing system was designed to deliver a 7.5 MHz clock to
allow for calibration data to be taken between crossings.
See Table 2 for the data rates at each trigger level.

Table 2. Event Rates

 Frequency Event Size Data Rate
Into L1 2.5 MHz 200 KB 500 GB/sec
Into L2/L3 50 KHz 250 KB 12.5 GB/sec
Into
archival

2.5 KHz 80 KB 200 MB/sec

Fig. 1 shows the overall architecture of the BTeV trigger

and DAQ.
There are several points in Fig. 1 worth noting. First, the

detector was unique in that all the data was brought off the
detector and digitized in subdetector-specific front end
boards. This data was sent via point to point copper cable to
data combiner boards (DCBs) before being sent to the first
level trigger over optical links. The DCB design was
common across subdetectors1. This architecture benefited
the design in that 1) much of the L1 trigger could be done
in software which allowed for many commodity
components 2) the DCBs provided a single entry point into
the trigger/DAQ that could be centrally designed and
maintained, reducing the long term support load.

Secondly, data collected in the DCBs were routed to 8
independent, parallel paths called highways. This design
reduced the control overhead on each particular highway
and grouped data coming out of the L1 buffers into larger
packets for better network performance.

Thirdly, the Level 2 and 3 trigger (L2 and L3,
respectively) decisions were made on the same L2/L3 farm.
Lastly, the baseline of the BTeV architecture defined
logging data to large disk farms using dCache[2] as the
underlying data storage support software.

The following sections will spell out some of the features
of the online system: highway architecture (II), fault
tolerance (III), and partitioning (IV).

1 More precisely, the output to the high speed optical links was in

common. There were two variants to the input side. One for FPIX front
end boards (Pixel and Strip detectors) and one for nonFPIX boards. See
Fig. 2 for a more detailed layout of the DCB.

BTeV Trigger/DAQ Innovations
Margaret Votava on behalf of the BTeV Trigger and Trigger Groups

T

II. HIGHWAY ARCHITECTURE

A. DCB

The DCBs were a custom component and interface

between the subdetectors’ front end electronics and the
common data readout system. Two flavors of this board
existed – one for the FPIX readout (Pixel and Strip
detectors) and one for everyone else. For the purposes of
this paper, they can be considered the same with only a
variation on the configuration of the input ports and rates.

 DCBs were the place in the online architecture that split
the detector data into highways – eight parallel and
independent data streams each processing 1/8th of the
detector data. The original DCB design routed a crossing at
a time. This resulted in a complex routing table algorithm to
factor out any periodicity in the tevatron. The DCB routed
data for a given crossing to one and only one highway.

Fig. 2 shows the data and control flow in/out of a DCB.
Each board contained a commercial CPU and fast Ethernet
interface for control and low speed data readout for
diagnostics and commissioning. The DCBs received precise
clock information from the timing system We imagined
being able to reset/reconfigure “live” on a future crossing.
E.g, if a catastrophic highway failure occured, the DCBs
could be sent a control command to route to 7 highways
instead of 8 starting at crossing number “N".

We were investigating the possibility of routing data a
turn at a time. This alternative approach would simplify the
routing, but increase the length of time data would live in
the DCB, exposing it to a higher single event upset rate. It
would also mean that data from FPIX sources would need

to be time ordered, a functionality that was being designed
into the pixel L1 trigger. Turn routing also had the
advantage of being self balancing. That is, the traffic
carried over a single highway was the same (on average)
for each of the highways. This was true no matter how
many highways were in service. If a highway dropped out,
the remaining highways would have absorbed the load
evenly.

B. L1 Trigger

One particular highlight of the BTeV design is a

commodity based L1 tracking trigger running
asynchronously at full rate. The L1 trigger functionality

CPU

Input FPGA

Timing
System

Output FPGA

Output Data to L1 Buffer (Fiber)
8 fiber optic channels, one for
each highway

2.0

Linux
host DCBFast

Ethernet
100Mbps/s

Input Data from Front
End Boards (Cu)

144 links (ie, boards)

140 Mbps/link fpix
600 Mbps/link nonfpix

Control links to
front end boards

(Cu)

Figure 2

8 Data Highways

ITCHGL1

Level-1 Buffers

Pixel Processors

FPGA
Segment

Finder

Level-1
Track/Vertex

Farm

L1 Switch DAQ Highway Switch

Cross Connect
Switch

Fanout Switches

Level 2/3

Farm

Data Logger

Data Combiners +
Optical Transmitters

Front End Boards

8 Data Highways8 Data Highways

ITCHGL1

Level-1 Buffers

Pixel Processors

FPGA
Segment

Finder

Level-1
Track/Vertex

Farm

L1 Switch

ITCHGL1

Level-1 Buffers

Pixel Processors

FPGA
Segment

Finder

Level-1
Track/Vertex

Farm

L1 Switch DAQ Highway Switch

Cross Connect
Switch

DAQ Highway Switch

Cross Connect
Switch

Fanout Switches

Level 2/3

Farm

Fanout Switches

Level 2/3

Farm

Data LoggerData LoggerData Logger

Data Combiners +
Optical Transmitters

Front End Boards

Figure 1. Online Architecture

will only be summarized here as several aspects of it are
described in greater detail in other papers [3],[4],[5].

Beam crossing data from low-level FPGA segment
trackers were routed through a switching fabric to L1
worker nodes. L1 worker nodes were commodity
processors similar to L2/L3. Each of the highways
contained one L1 Infiniband switch. The segment tracker
nodes (about fifteen) served as input to the switch. The data
at the inputs are distributed to a small farm (about thirty-
three) of L1 worker nodes. Data throughput simulations
indicated that the output from each of the segment trackers,
including excess capacity, totaled about 167 MB/s. The
estimated total capacity needed per highway on the input
side of the switch was 2.5 GB/s. Commercial off-the-shelf
Infiniband switches were capable of handling this load. Due
to fixed message latencies (between 4 to 8 us) in this type
of switching fabric, small messages led to undesirable
performance. Almost all the work of transferring data
through the switch was done by the HCA, leaving the CPU
free to processing the crossing data. The Infiniband
switching fabric had enough capacity to handle the
additional load necessary to send L1 worker-node results to
Global Level-1 (GL1).

C. Level 1 Buffers

Data from the DCBs were routed over point to point
optical links into L1 buffers, another custom electronics
component. Each L1 Buffer could communicate with 24
DCBs (two crates worth). It’s this unit that we will talk
about in the partitioning section regarding resource
reservation.

The primary responsibility of an L1 buffer was to buffer
the detector data for a long enough time to make an L1
trigger decision and keep accepted events available until
transferred to the L2 trigger. There were 24 L1 buffers per
highway with 3G of memory each for an aggregate total of
~0.5 TBytes of memory, or roughly 1 second of data.

Data which were needed for trigger decisions (from pixel
and muon detectors) were fed into the segment
preprocessors in the L1 trigger. The L1 worker nodes also
function as L1 Buffers serving L2 the results from L1
trigger algorithms.

Data entered the L1 buffer though an input FPGA and
were stored in a circular buffer. After an L1 accept was
received, all data for that subevent were copied into a
smaller 1GB memory area that was used to transfer
accepted events to the downstream L2 trigger farm. No
special information was needed from the ITCH
(Information Transfer Control Hardware) regarding L1
rejects; the data was simply overwritten in the circular
buffer.

D. L2/L3 Trigger

From the L1 buffers, data were sent over a GBit Ethernet
link to the to the L2/L3 trigger farm. The L2/L3 trigger
software was running on the same hardware with the
distinction being which physics algorithm would have been
currently active. L2 was not required to make the event
persist – it moved directly through memory to the L3
algorithms. L3 was responsible for the final event building.

The farm consisted of commodity processors and was
also split into highways. Highways were self contained
with lower bandwidth channels connecting them. Each
highway consisted of 96 worker nodes, each with dual
CPUs.

 To reduce the control overhead and complexity of the
software, we designed the event building switch with
enough capacity to send a complete event to each L2 node.
Each CPU box was referred to as a worker node. Worker
nodes would declare themselves to a particular partition, ie,
trigger list (see section on partitioning) and notify the ITCH
when they were ready for data. The ITCH would assign
them a particular crossing number. All data from that
crossing would be sent to that worker node.

Worker nodes themselves were grouped into manageable
units in a highway. Each group was controlled by a regional
manager consisting of 12 worker nodes. A regional
manager was responsible for configuring its associated
worker nodes, fanning out control commands and
collecting status, caching DBMS data (eg, various versions
of the trigger algorithms and calibration data), and
handling regional faults.

III. FAULT TOLERANCE

The BTeV trigger performed sophisticated computations

using large ensembles of FPGAs and conventional
microprocessors. This system would have had on the order
of 5000 computing elements and many network switching
elements. The need for fault-tolerant and fault-adaptive
software, as well as flexible computing techniques and
software to manage this huge computing platform had been
identified as one of the more challenging aspects of this
project.

As a response to this challenge, the Real Time Embedded
Systems (RTES) project group was formed and funded
through a 5 year NSF grant. This research group is a
collaborative effort between electrical engineers, computer
scientists and high energy physicists. The group is
researching ways to increase the reliability of high-
performance, heterogeneous, real-time systems.

 The BTeV trigger was used as a model system for
RTES. One reason for this is because of the overall
asynchronous nature of this complex system, where no
"hard failure" occurs if a specific computation is not

delivered in time; only a temporary degradation of the
performance is observed. Example observed failures are
computations takes a bit longer than expected, or, bunch
crossings declared lost, or "rejected" if the computation
takes too long. Our understanding of the nature of
interactions indicated that timeouts are expected to occur.

The RTES project has embraced a multi-aspect approach
to large, real-time system modeling and fault specification
and adaptation. Model integrated computing methods are
used within a graphical modeling environment to describe
system components and their physical relationships,
messages exchanged by software processes, run control
state machines, user interface definitions, and custom
ARMOR elements. Metamodels define the domain-specific
graphical languages for each of these. ARMORs (adaptive
reconfigurable mobile objects for reliability) provide
intrinsically reliable high level process oversight, with the
ability to stop/restart applications in-place (on the same
node), or to relocate the work to an available alternative
resource. VLAs (very lightweight agents) provide low
impact, low level detection of fault conditions.

These techniques have been demonstrated in a prototype
of the BTeV L1 embedded processor farm, as well as in a
prototype of the L2/3 commodity computer farm [6].

IV. PARTITIONING

Partitioning of the detector was defined to be running

multiple independent data acquisition systems in parallel.
This is not to be confused with the highway concept which
was the physical implementation of parallel data streams. A
partition is a logical concept and would have spanned
across highways.

The value of partitioning, and when to partition the
detector are different depending on the phase of the project
i.e., partitioning needs during commissioning (testing the
subdetectors in parallel) may be different than when testing
new L3 trigger algorithms while taking physics quality
data. Partitioning allowed spare cycles on the online trigger
farm(s) to be used for other offline processing when beam
is off or luminosity low without drastic change to the
system configuration. The BTeV L2/L3 farm contained
significant processing powe, and partitioning could provide
a means to increase the utilization of this resource.

Partitioning was strictly a logical concept which needed
to be mapped onto the physical implementation of the
online system. The online DAQ/trigger was to be
constructed in 2 stages with roughly 50% of capacity at
each stage. The first stage consisted of 4 highways. The
second stage was installed the next fiscal year. Even within
a stage, individual highways were commissioned one at a
time. The logical concept of partitioning needed to support
running multiple partitions on a single highway (when only
1 was constructed) as well as the final system with 8

highways
The parallel highway architecture and dynamic reloading

of DCB routing tables allowed for much flexibility in
configuring partitions and rules were being established to
limit to scope, function, and definition of partitioning. We
had not reached a consensus on many details regarding
partitioning at the time of termination. What we will
discuss here are some of the ideas and the directions in
which we were headed.

First we imagined that running a partition involved the
following steps: 1) selecting/reserving [a subset of]
electronics to be read out 2) Defining how much L2/L3
trigger processing power was needed and reserving those
resources, 3) initializing the hardware, 4) collecting the
data, and 5) freeing the resources

One of our original ideas for a possible use case was for
a physicist to select the strips and straw front end crates,
request 50 Mflops of L2/L3 nodes for processing, and then
let software map this out onto a physical implementation.
Depending on how many nodes might be needed, the layout
may be to run on a single highway or to route to n
highways. We rejected this idea because it could have been
confusing to the end user to understand exactly where data
is flowing. We ultimate developed a proposal that was a
balance between flexibility and ease of understanding for
the end user.

This approach imposed the following constraints: a) the
hardware for the L1 trigger on a particular highway could
not be partitioned, but could hold trigger tables for multiple
partitions b) the smallest source unit that could be reserved
was a single L1 buffer which corresponded to as many as
24 DCBs c) a worker node could belong to one and only
one partition d) L2 worker nodes connected to the same
regional manager could not span [online] partitions.

Because of the sheer number of electronics involved in
the Trigger/DAQ, we were developing the idea of the L1
trigger and active highways always being available as a
shared resource. A human run coordinator would establish
the overall online configuration for a period of time
(day/week/month) and coordinate the data taking runs
during this period. This person would have the
understanding of which configurations could support
multiple overlapping runs. This stable configuration period
had a fixed and predefined set of allowable highways.
Subdetector groups still had to select the specific
electronics to read out. These front end electronics could be
reserved for read/write or readonly (ie, can’t be reset or
initialized). It was the responsibility of the run coordinator
to schedule the detector so that users could get write access
as needed. Partitions could come and go then, by
adding/removing trigger tables as necessary.

An example would be the run coordinator making 4
highways available for the next two days. The pixel group
could reserve the pixel front end electronics and associated
L1 buffers for read/write, and load the pixel trigger table.
Crossings would be distributed to all 4 highways. Online

software would assign specific L2/L3 nodes to this partition
as constrained by the run coordinator. The silicon strip
group could come and reserve silicon electronics for
read/write and pixel for read only and load a second set of
trigger tables. Again, the software would assign L2/L3
worker nodes specifically to this partition. If a given
crossing passed the L1 trigger for both partitions, it could
be routed to worker nodes in both partitions or split
between the two partitions in a predefined scalar. This was
also still being discussed in the collaboration.

Partitioning became an obvious solution when discussing
the problem of how to utilize spare online cycles for
offline. The pure Computer Scientists involved in RTES
promoted real time scheduling on the worker nodes to
maximize CPU utilization, but they were outweighed by the
opinion that a particular worker node should be single
tasking for an operation the was more manageable and
easier to understand..

Nodes could manually be moved between online and
offline partitions, but would be automatically shifted to
offline as luminosity in the Tevatron dropped. The
automatic decision to migrate nodes between partitions
would be influenced by metrics measured by RTES as well
as an overall luminosity profile that would be loaded at the
start of a run.

V. CONCLUSION

Thanks to the efforts of many talented people in the
collaboration and at the lab as well as extremely helpful
comments from the many reviews, the DAQ and trigger
groups in BTeV were able to develop a highly credible
online architecture. This architecture was believable in
terms of cost and schedule with well understood, and
mimimal risks.

Key elements in the success of the design were
developing an architecture which included a) the split into
independent highways which reduced individual bandwidth
requirements, b) maximized the number of commodity
components (switching fabric, trigger farms) which
lowered cost (especially labor) and risk and well as allowed
for a more plug and play upgrade path, c) minimized the
variability between custom boards, i.e.,, the DCBs were
common across all detectors, and d) capitalized on using
large amounts of computing resources during periods of
accelerator downtime.

REFERENCES

[1] BTeV Collaboration, BTeV Proposal and TDR. Available:

http://www-btev.fnal.gov/public/hep/general/proposal/index.shtml
[2] Available: http://www.dcache.org
[3] M. Wang, “ A Commodity Solution Based High Data Rate

Asynchronous Trigger System for Hadron Collider Experiments”,
Proceedings of the the IEEE Real Time Conference 2005,
Stockholm, Sweden, June 2005, to be published.

[4] J. Wu, “The Application of Tiny Triplet Finder (TTF) in BTeV Pixel
Trigger”, Proceedings of the the IEEE Real Time Conference 2005,
Stockholm, Sweden, June 2005, to be published.

[5] J. Wu, “Integrated Upstream Parasitic Event Building Architecture
for BTeV Level 1 Pixel Trigger System”, Proceedings of the the
IEEE Real Time Conference 2005, Stockholm, Sweden, June 2005,
to be published.

[6] M. J. Haney, et al., "The RTES Project - BTeV, and Beyond",
Proceedings of the the IEEE Real Time Conference 2005,
Stockholm, Sweden, June 2005, to be published.

